Do we need to silence microRNAs in severe asthma?

Pull apart and decode the human genome and you’ll find, rather surprisingly perhaps, that only 2% of it contains protein-coding genes. The majority of the leftover genes are transcribed into appropriately named non-protein-coding RNA (ncRNA). But, rather than simply existing purposelessly, these ncRNA molecules perform many crucial roles, such as the regulation of gene expression, for instance, which is controlled by a particular group of ncRNAs known as microRNAs (shortened to miRNAs). By binding to mRNA molecules and labelling them for degradation, miRNAs can suppress gene expression, and hence prevent the production of particular proteins. In humans, over one thousand miRNAs have been dis

Unravelling the role of TGFβ in allergic immune responses

The challenges faced by the mucosal sites of the airways are complex and continuous. Exposed to billions of potential threats each day, the pulmonary immune system must not only be primed to respond to inhaled pathogens from the airways, it must also be capable of quickly distinguishing between harmful threats and harmless particles. An immune response to a virus would be beneficial, for instance, whereas a response to something as innate as dust or pollen would be unnecessary and potentially damaging to the host. If threats are to be quickly and correctly recognised, the innate immune system must be carefully regulated and sustained. As the most superficial surface of the airway mucosa, the

Contact us

Connect with us

© BALR 2019

  • Twitter Clean
  • White LinkedIn Icon

Charity number: SC010151